Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY **Summer Examination-2022**

Subject Name: Discrete Mathematics

Subject Code: 4TE04DSM2		Branc			
Semest	er: 4	Date: 02/05/2022	Time:	11:00 To 02:00	Marks: 70
Instruct (1) (2) (3) (4)	ions: Use o Instru Draw Assu	of Programmable calculator & an actions written on main answer b r neat diagrams and figures (if ne me suitable data if needed.	y other elect ook are stric cessary) at ri	ronic instrument is pr tly to be obeyed. ght places.	ohibited.
Q-1	 a) b) c) d) e) 	Attempt the following question In a Lattice, $a \le b$ and $b \le c$ th (a) $b \le c$ (b) $c \le a$ An Equivalent Realation is (a) Reflexive (b) Symmetric Graph is collection of (a)Equation (b)Row and column A tree is (a) disconnected acylic graph (c) may be connected or disconnected If $G = \{1, -1, i, -i\}$ is a group u	ns: en (c) $a \le c$ (c) Transitiv (c) Vertices (b) connected (d) No inder multipl	(d) None of these e (d) all of these s and edges (d) None ected acylic graph one of these lication then $O(G)$ is	(14) of these
	f)	(a) 1 (b) 2 (c) 3 (d) 4 If m_i and m_j are distinct minter (a) $m_i * m_i = 0$ (b) $m_i * m_i =$	ms in n —van = 1 (c) m_i (find the second seco	The then for the then for the then for the then for the then the then the then the then the then the theta and the	$m_i = 1$
	g)	A Complemented distributive la (a) Boolean algebra (b) Modular (c) Bounded lattice (D) Completion	ttice is called r lattice te lattice	1	,
	h)	The negation of $\forall x, P(x)$ is (a) $\exists x, P(x)$ (b) $\exists x, \sim P(x)$	(c) $\forall x, \sim P($	(d) $\nexists x, P(x)$	
	i) j)	If <i>n</i> objects are placed in <i>m</i> place contains at least object (a) $\left[\frac{n-1}{m}\right] + 1$ (b) $\left[\frac{n+1}{m}\right] - 1$ (c) True or false: Every cyclic group is	es for $m < n$ s (c) $\left[\frac{n-1}{m}\right] - 1$ s abelian.	a, then one of the place (d) $\left[\frac{n+1}{m}\right] + 1$	ces must
	k)	Define: Strongly Connected diag	graph		
	l)	State Pigeonhole principle.			
	m)	Is $< S_{75}, GCD, LCM, 1, 75 > Comp$	plemented latt	ice?	
	n)	True or false: I and O are only com	plement of ea	ch other.	

Attempt any four questions from Q-2 to Q-8

Q-2Attempt all questions(14)a) Show that $\langle R, min, max \rangle$ is a lattice(06)b) Prove that any two cosets of a subgroup are either disjoint or identical.(04)c) For a lattice $\langle S_{1001}, D \rangle$, Find cover of each element and Also Draw the(04)Hasse diagram.(04)Q-3Attempt all questionsa) Find Join-irreducible, atom, meet-irreducible and anti-atom for $\langle S_{70}, D \rangle$

b) Let $\langle L, *, \bigoplus, 0, I \rangle$ be a lattice and $a, b, c \in L$ then following conditions are equivalent (05)

 $i) a * (b \oplus c) = (a * b) \oplus (a * c) \qquad ii) a \oplus (b * c) = (a \oplus b) * (a \oplus c)$

c) Show that $(p \lor q) \land (\sim p \land \sim q)$ is a contradiction.

Q-4 Attempt all questions

Q-5

Q-6

a) Find all node base of the following diagraph shown in the figure. Also (06) give paths from vertex H to D.

b) Prove that the number of vertices of odd degree in a undirected graph is (05) always even. c) State Handshaking theorem. Also draw an undirected graph with 4 (03)vertices such that all the vertices have three degree Attempt all questions (14) a) State and prove stone's representation theorem. (07)**b**) State and prove Lagrange's theorem on group. (07) Attempt all questions (14)**a**) Find all minterms of a Boolean algebra with free variables x_1, x_2, x_3 . (05)**b**) Prove that $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ by using Mathematical (04) induction. where n be a positive integer. c) From the following adjacency matrix, find the out degree and in degree (05)

of each node. Also verify your answer by drawing digraph and its

(04)

(14)

adjacency matrix

11	v_1	v_2	v_3	v_4
ν_1	г1	2	2	ן1
v_2	1	0	1	2
v_3	2	1	1	0
v_4	LO	2	1	0]

Q-7	a)	Attempt all questions Show that the set of cube roots of unity form a group under multiplication.	(14) (05)
	b)	Show that $\sim r$ is a valid conclusion from the premises $p \Rightarrow \sim q, r \Rightarrow p, q$ with truth table and without truth table.	(05)
	c)	Write the Boolean xpressions $x_1 * x_2$ in an equivalent sum of products canonical form in three variables x_1, x_2, x_3 .	(04)
Q-8		Attempt all questions	(14)
-	a)	Show that $\langle S_{30}, *, \bigoplus \rangle$ and $\langle P(A), \cap, \cup \rangle$ are isomorphic lattices for $A = \{a, b, c\}$	(07)
	b)	Let $\langle L, *, \oplus, ', 0, 1 \rangle$ be a complemented lattice and for any $a, b \in L$ then prove that $a \leq b \Leftrightarrow a * b' = 0 \Leftrightarrow b' \leq a' \Leftrightarrow a' \oplus b = 1$	(07)

